Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; 46(1): 54-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26517449

RESUMO

The HESI-coordinated RISK21 roadmap and matrix are tools that provide a transparent method to compare exposure and toxicity information and assess whether additional refinement is required to obtain the necessary precision level for a decision regarding safety. A case study of the use of a pyrethroid, "pseudomethrin," in bed netting to control malaria is presented to demonstrate the application of the roadmap and matrix. The evaluation began with a problem formulation step. The first assessment utilized existing information pertaining to the use and the class of chemistry. At each stage of the step-wise approach, the precision of the toxicity and exposure estimates were refined as necessary by obtaining key data which enabled a decision on safety to be made efficiently and with confidence. The evaluation demonstrated the concept of using existing information within the RISK21 matrix to drive the generation of additional data using a value-of-information approach. The use of the matrix highlighted whether exposure or toxicity required further investigation and emphasized the need to address the default uncertainty factor of 100 at the highest tier of the evaluation. It also showed how new methodology such as the use of in vitro studies and assays could be used to answer the specific questions which arise through the use of the matrix. The matrix also serves as a useful means to communicate progress to stakeholders during an assessment of chemical use.


Assuntos
Exposição Ambiental/efeitos adversos , Mosquiteiros Tratados com Inseticida/efeitos adversos , Piretrinas/toxicidade , Animais , Tomada de Decisões , Exposição Ambiental/análise , Humanos , Modelos Animais , Medição de Risco , Testes de Toxicidade , Estados Unidos , United States Environmental Protection Agency
2.
Toxicol Sci ; 113(1): 4-26, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19770482

RESUMO

Assessing the risk profiles of potentially sensitive populations requires a "tool chest" of methodological approaches to adequately characterize and evaluate these populations. At present, there is an extensive body of literature on methodologies that apply to the evaluation of the pediatric population. The Health and Environmental Sciences Institute Subcommittee on Risk Assessment of Sensitive Populations evaluated key references in the area of pediatric risk to identify a spectrum of methodological approaches. These approaches are considered in this article for their potential to be extrapolated for the identification and assessment of other sensitive populations. Recommendations as to future research needs and/or alternate methodological considerations are also made.


Assuntos
Modelos Biológicos , Saúde Pública/métodos , Testes de Toxicidade/métodos , Adolescente , Adulto , Fatores Etários , Biomarcadores/metabolismo , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Exposição Ambiental , Monitoramento Ambiental , Predisposição Genética para Doença , Regulamentação Governamental , Política de Saúde , Humanos , Lactente , Recém-Nascido , Farmacocinética , Saúde Pública/legislação & jurisprudência , Medição de Risco , Fatores de Risco
3.
Neurotoxicology ; 30 Suppl 1: S1-16, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19748519

RESUMO

Twelve commercial pyrethroid insecticides (technical-grade active ingredients) were evaluated individually for acute neurobehavioral manifestations of toxicity under conditions suited to assist with determining whether they act by a common mechanism of toxicity. The pyrethroids that were tested reflect a diversity of structures, including six with an alpha-cyano phenoxybenzyl moiety (beta-cyfluthrin, lambda-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate and fenpropathrin) and six without this moiety (bifenthrin, S-bioallethrin, permethrin, pyrethrins, resmethrin and tefluthrin). These chemicals also present a variety of behavioral effects, including ones that are historically classified as causing a T (tremor), CS (choreoathetosis with salivation) or intermediate syndrome of intoxication, and others that have not previously been classified. Each pyrethroid that was tested consisted of the complement of isomers that occur in commercial products--a key factor for relevance for environmental and human exposure and for comparisons, since the biological activity of the individual isomers can vary tremendously. Young-adult male Sprague-Dawley rats (10 per dose group) were administered a single dose of pyrethroid by oral gavage, in corn oil, at a volume of 5 ml/kg. Each was tested at a range of two or three dose levels, including a minimally toxic dose, to establish the more sensitive manifestations of toxicity, and a more toxic dose, to establish a more complete spectrum of neurobehavioral manifestations. Animals were evaluated using a functional observational battery (FOB) that was designed to characterize and distinguish effects classically associated with T or CS syndromes of intoxication. The FOB was performed when manifestations of toxicity were most apparent at the time of peak effect (2, 4, or 8 h post-dosing) by observers who were blinded to dose group assignment, thus avoiding possible bias. The results from this study indicate that some pyrethroids clearly exhibit the historic classification symptoms of the T and CS syndromes while others do so less obviously. Use of the statistical technique of Principal Component Analysis (PCA) further helped interpret the study findings, as described in the accompanying paper (Breckenridge et al., 2009). These results establish manifestations of neurotoxicity in vivo that can be used as weight of evidence to determine whether pyrethroid insecticides act through a common mechanism of toxicity in mammals. Based on a review of the FOB data, analyzed by PCA, and other published data, two common mechanism groups are proposed. Group 1 would include pyrethrins, bifenthrin, resmethrin, permethrin, S-bioallethrin and tefluthrin. Group 2 would include cypermethrin, deltamethrin, esfenvalerate, beta-cyfluthrin and lambda-cyhalothrin. Fenpropathrin exhibited features of both groups.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inseticidas/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/fisiopatologia , Piretrinas/toxicidade , Administração Oral , Animais , Animais Recém-Nascidos , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Observação/métodos , Análise de Componente Principal , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sensação/efeitos dos fármacos , Método Simples-Cego , Fatores de Tempo
4.
Neurotoxicology ; 30 Suppl 1: S17-31, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19766671

RESUMO

Neurotoxicity and mechanistic data were collected for six alpha-cyano pyrethroids (beta-cyfluthrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin and lambda-cyhalothrin) and up to six non-cyano containing pyrethroids (bifenthrin, S-bioallethrin [or allethrin], permethrin, pyrethrins, resmethrin [or its cis-isomer, cismethrin] and tefluthrin under standard conditions. Factor analysis and multivariate dissimilarity analysis were employed to evaluate four independent data sets comprised of (1) fifty-six behavioral and physiological parameters from an acute neurotoxicity functional observatory battery (FOB), (2) eight electrophysiological parameters from voltage clamp experiments conducted on the Na(v)1.8 sodium channel expressed in Xenopus oocytes, (3) indices of efficacy, potency and binding calculated for calcium ion influx across neuronal membranes, membrane depolarization and glutamate released from rat brain synaptosomes and (4) changes in chloride channel open state probability using a patch voltage clamp technique for membranes isolated from mouse neuroblastoma cells. The pyrethroids segregated into Type I (T--syndrome-tremors) and Type II (CS syndrome--choreoathetosis with salivation) groups based on FOB data. Of the alpha-cyano pyrethroids, deltamethrin, lambda-cyhalothrin, cyfluthrin and cypermethrin arrayed themselves strongly in a dose-dependent manner along two factors that characterize the CS syndrome. Esfenvalerate and fenpropathrin displayed weaker response profiles compared to the non-cyano pyrethroids. Visual clustering on multidimensional scaling (MDS) maps based upon sodium ion channel and calcium influx and glutamate release dissimilarities gave similar groupings. The non-cyano containing pyrethroids were arrayed in a dose-dependent manner along two different factors that characterize the T-syndrome. Bifenthrin was an outlier when MDS maps of the non-cyano pyrethroids were based on sodium ion channel characteristics and permethrin was an outlier when the MDS maps were based on calcium influx/glutamate release potency. Four of six alpha-cyano pyrethroids (lambda-cyfluthrin, cypermethrin, deltamethrin and fenpropathrin) reduced open chloride channel probability. The R-isomers of lambda-l-cyhalothrin reduced open channel probability whereas the S-isomers, antagonized the action of the R-isomers. None of the non-cyano pyrethroids reduced open channel probability, except bioallethrin, which gave a weak response. Overall, based upon neurotoxicity data and the effect of pyrethroids on sodium, calcium and chloride ion channels, it is proposed that bioallethrin, cismethrin, tefluthrin, bifenthrin and permethrin belong to one common mechanism group and deltamethrin, lambda-cyhalothrin, cyfluthrin and cypermethrin belong to a second. Fenpropathrin and esfenvalerate occupy an intermediate position between these two groups.


Assuntos
Inseticidas/toxicidade , Síndromes Neurotóxicas/classificação , Síndromes Neurotóxicas/etiologia , Piretrinas/classificação , Piretrinas/toxicidade , Animais , Encéfalo/ultraestrutura , Cálcio/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Análise Fatorial , Ácido Glutâmico/metabolismo , Inseticidas/classificação , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/classificação , Canais Iônicos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Neuroblastoma/patologia , Síndromes Neurotóxicas/fisiopatologia , Oócitos , Técnicas de Patch-Clamp , Análise de Componente Principal , Ratos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/fisiologia , Xenopus
5.
Toxicology ; 171(1): 3-59, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11812616

RESUMO

The Food Quality Protection Act (FQPA) of 1996 requires the United States Environmental Protection Agency to consider the cumulative effects of exposure to pesticides having a 'common mechanism of toxicity.' This paper reviews the information available on the acute neurotoxicity and mechanisms of toxic action of pyrethroid insecticides in mammals from the perspective of the 'common mechanism' statute of the FQPA. The principal effects of pyrethroids as a class are various signs of excitatory neurotoxicity. Historically, pyrethroids were grouped into two subclasses (Types I and II) based on chemical structure and the production of either the T (tremor) or CS (choreoathetosis with salivation) intoxication syndrome following intravenous or intracerebral administration to rodents. Although this classification system is widely employed, it has several shortcomings for the identification of common toxic effects. In particular, it does not reflect the diversity of intoxication signs found following oral administration of various pyrethroids. Pyrethroids act in vitro on a variety of putative biochemical and physiological target sites, four of which merit consideration as sites of toxic action. Voltage-sensitive sodium channels, the sites of insecticidal action, are also important target sites in mammals. Unlike insects, mammals have multiple sodium channel isoforms that vary in their biophysical and pharmacological properties, including their differential sensitivity to pyrethroids. Pyrethroids also act on some isoforms of voltage-sensitive calcium and chloride channels, and these effects may contribute to the toxicity of some compounds. Effects on peripheral-type benzodiazepine receptors are unlikely to be a principal cause of pyrethroid intoxication but may contribute to or enhance convulsions caused by actions at other target sites. In contrast, other putative target sites that have been identified in vitro do not appear to play a major role in pyrethroid intoxication. The diverse toxic actions and pharmacological effects of pyrethroids suggest that simple additivity models based on combined actions at a single target are not appropriate to assess the risks of cumulative exposure to multiple pyrethroids.


Assuntos
Inseticidas/toxicidade , Síndromes Neurotóxicas/epidemiologia , Neurotoxinas/toxicidade , Piretrinas/toxicidade , Animais , Comportamento/efeitos dos fármacos , Análise de Alimentos , Humanos , Inseticidas/farmacocinética , Canais Iônicos/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Neurotoxinas/farmacocinética , Piretrinas/farmacocinética , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...